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The stereoselective reduction of &ketosulphoxides, especially homochiral derivatives having an 
asymmetric sulphur centre. has heen firmly established as a method of constructing chiral alcohols. with 
~texamplesfnnnthegroupofSolladiCillusaatingtheutilitydthis~hinthe~synthesisofa 
range of natural products.t Of key importance is the ability to select either diastereoisomeric 
hydroxysulphoxide from a particular ketosulphoxide, &ply by the appq&te choice of reducing age&* 
Subsequent removal of the sulphoxide auxiliary is then requir& usually in a reductive step using Raney 
nickeL We detxumstrate hae that this type of approach can su~ssfully be applied to catain cyclic p- 
ketosulphoxides, and show that the products can he furtha transfd iuto interestingly functionalised 

epoxides 
We have previously dcscrihcd the transformation of thiane oxide 1 into a number of substituted 

derivatives, including the B_ketosulphoxides 2a and 2b, via the intermediate sulphinyl carbanion, Scheme 
1.3 

Scheme 1 

ForourshldyafthereductionoftheseproductPwecuriedoutanumbaofadditionalscylations~oe 
a range of&ketosulphoxides 28-a iu good yi&14 The staeochemistry of the ketosulphoxide products is 
asrhown,withthercylgroup~gin~~c&tothesulpboxideaxygen.w~thesecompoundsin 
handwe examined their reduction using the protocols employed pmviously by Sollad% to give the two 
diastaeoirurmtric hydroxysulphoxides 3 and 4, Schaw 2.u 
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DIBAL, THP, -7tfC + 
R (+ dditivs) R 

(3) 

It addme % 

Me 51 
Me =2 67 

‘Bu 88 
‘Bu zncll 65 

Et 72 
El =2 75 

iR so 
iR =32 60 

Pb 
Pb -2 74 

a-hdicakdolfiaiaancrmt&ected 
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Scheme 2 
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Several points arc worth noting fkom the tcsults given in the table. Firstly, all the reductions employing 
zoQ2 in the reaction mixture proceeded to give only hydroxysulphoxide 4. secondly, the reactions 
involving the use of DIBAL alone give mom mixed results, with 2b and 2d giving only 3, whereas 2a and 
2c give mixtures of ~Inaddition,~foundthatthereducti~af2ewitbDIBALalonedidnotgive 
acceptable results, perhaps due to remAdo complications. 

The nsults can reasonably bc accommodated by the usual transition state models for this type of 
reduction. which involve either the least stcrkally hindcxd approach of the hydride reagent on a ZnQz 
chelated kctosulphoxidc, as rqrcsentcd by 5. or intramolecular hydride dclivcry as in 6 and 7.=6 
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involves initial reducrion of the snlphoxide group to the camspondino sulphkk’l 
with Me30+BF4- and then base, to give the epoxide products shown in Scheme 3.* 

(4b) R = ‘Bu 76%. R = ‘Bu (8)69%,R=h 

(4c)R=Rt 52%.R=Rt (9)6S%,R=Et 

(3b)R=“Bu 

(3c)R=Et 

56%,R=‘Bu (10)5O%,R=‘Bu 

68%.R=Et (11)6O%.R=Rt 

sdwme3 

Two examples of each stueochemical series of hydroxysulphoxide 3 and 4 wue taken through this 
sequeocetogivetbea~~~prodocu,8and9apthecir-compouadolooand.~Theprodlcrsare 
essentially w forms ofepoxides derived from kmuuliyllc akohols, which are not straightfonvsrd 
to prepate in -ve fashion. Fux?h-, our s-ve route to this type of epoxy alcohol 
derivative is quite versatik and should allow the intnxiuction of additional fwlctionality, or substituents, 
byfurthtrsubstitutioaofthethianeoxidering,~bymenipulationdtbethiamethylgrouppresentintbe 
final prod~cts.~o Finally, it should be noted that the compounds described above a~ available in non- 
racanic~sincewehnnshownthatenanti~~vesubptitutionofthethianeoxide1canbcachicnd 
by~loyingahomochirallithilnn~baseforthedeprotonatiollll 
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